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Structural and metabolic connectivity are advanced features that facilitate the
diagnosis of patients with Alzheimer’s disease (AD) and mild cognitive impairment
(MCI). Connectivity from a single imaging modality, however, did not show evident
discriminative value in predicting MCI-to-AD conversion, possibly because the inter-
modal information was not considered when quantifying the relationship between brain
regions. Here we introduce a novel approach that extracts connectivity based on both
structural and metabolic information to improve AD early diagnosis. Principal component
analysis was performed on each imaging modality to extract the key discriminative
patterns of each brain region in an independent auxiliary domain composed of AD and
normal control (NC) subjects, which were then used to project the two subtypes of MCI
to the low-dimensional space. The connectivity between each target brain region and
all other regions was quantified via a multi-task regression model using the projected
data. The prediction performance was evaluated in 75 stable MCI (sMCI) patients
and 51 progressive MCI (pMCI) patients who converted to AD within 3 years. We
achieved 79.37% accuracy, with 74.51% sensitivity and 82.67% specificity, in predicting
MCI-to-AD progression, superior to other existing algorithms using either structural
and metabolic connectivities alone or a combination thereof. Our results demonstrate
the effectiveness of multi-modal connectivity, serving as robust biomarker for early
AD diagnosis.

Keywords: Alzheimer’s disease (AD), mild cognitive impairment (MCI), multi-modal connectivity, early diagnosis,
individual network

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by short-
term memory loss and a decline of cognitive functions, including executive, visuospatial abilities,
and language (Braa and Braak, 1991). Mild cognitive impairment (MCI) is referred to as the
prodromal stage of AD, which is accompanied by a measurable impairment in memory, without
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the loss of general cognitive functioning (Petersen et al., 2001;
Morris and Cummings, 2005). Currently, over 50 million people
have been diagnosed with AD worldwide, and this number will
be nearly double by 2030 (Patterson, 2018). Moreover, as the
intermedia stage between normal control (NC) and AD, over one-
third of patients with MCI, on average, will progress to AD within
5 years (Ward et al., 2013). Because AD is an incurable disease
that has become a serious global issue, developing diagnostic
biomarkers for early prediction of the conversion from MCI to
AD is of great importance, which, however, remains a challenge.

Brain network analysis is an efficient tool in characterizing
topological organization of the brain (e.g., functional integration
and segregation), which has been widely used in investigating
cerebral abnormalities caused by mental disorders, such as AD
and MCI (Tijms et al., 2013; Kong et al., 2015; Kim et al.,
2016; Wang et al., 2016). However, unlike a functional network
that can be built based on the image of a single subject,
the construction of morphological and metabolic networks are
mostly at the group-level, which cannot be used to represent
individual properties for diagnostic purposes (He et al., 2008;
Yao et al., 2010, 2015; Evans, 2013). To address this issue, several
methods for extracting brain networks from individual magnetic
resonance (MRI) and positron emission tomography (PET)
images have been proposed. For example, at the brain parcel level,
Pearson correlation, Euclidean distance, mutual information, and
the Kullback–Leibler divergence of probability density function
were, respectively, used to measure the relationship between
the properties (e.g., cortical thickness, volume and metabolism)
of distinct brain regions (Wee et al., 2013; Kong et al., 2014;
Raamana et al., 2015; Zheng et al., 2015; Jiang et al., 2017; Li et al.,
2017; Liu et al., 2017); at the voxel-level, Pearson correlations
between gray matter density of small patches consisting of a
serial of voxels (e.g., 3 × 3 × 3 voxels in each patch) were used
to construct the covariance matrix (Tijms et al., 2012). These
networks were reported with “small-world” organization and
altered network matrices with the progression of AD (Tijms et al.,
2013; Kong et al., 2015; Kim et al., 2016; Wang et al., 2016); and
achieved an evident performance superior to original anatomical
and metabolic features in classifying AD and MCI cohorts from
the NCs (Wee et al., 2013; Liu M. et al., 2014; Zheng et al., 2015;
Yao et al., 2016; Zhao et al., 2017).

Though informative, these networks are based on paired
relationships, which omit the nature of inter-play in the brain
(one brain region has “first-order” connections with only a few
of the other regions) (Sporns et al., 2000) that may contain
crucial information for disease diagnosis. Recent studies applied
the sparse regression model (e.g., LASSO) to functional MRI to
quantify such interaction patterns and established the “hyper-
functional network,” which was powerful in diagnosing patients
with MCI, attention deficit hyperactivity disorder (ADHD)
and major depressive disorder (MDD) (Ryali et al., 2012;
Jie et al., 2014, 2016; Guo et al., 2018; Li et al., 2019).
We further extended this connectivity extraction strategy to
construct a cortical network based on multiple morphological
features in the brain (so called multi-feature based network,
MFN) (Zheng et al., 2018). The connectivity of the MFN
achieved outstanding performance that is superior to both

anatomical features and some of the aforementioned structural
networks in identifying patients with AD, MCI, and autism
spectrum disorder (ASD) (Zheng et al., 2018, 2019), suggesting
that cortico-cortical structural connectivity may possess critical
information for AD/MCI diagnosis. However, the features of
the MFN failed to classify the MCI convertors from non-
convertors (Zheng et al., 2018), possibly due to the subtle
differences between the two cohorts that cannot be captured
by networks that only contain morphological information.
A recent study indicated that FDG-PET and T1 images may
characterize the features of AD from different perspectives, e.g.,
hypometabolism is more related to the pathological processes
and clinical severity of AD, whereas cortical atrophy is more
related to the cognitive reserve (Benvenutto et al., 2018). We thus
speculated that the cortico-cortical connectivity that combines
both metabolic and morphological information may further
enhance the prediction performance of MCI-to-AD conversion,
because this connectivity synergistically depicts the abnormal
changes on both sides.

In the present study, we aimed to develop a brain connectivity
that jointly reflects the high-order morphological and metabolic
interactions to improve the prediction accuracy of MCI
conversion. A framework to construct brain networks based on
multi-modal images (MRI and PET) was proposed. For each
imaging modality, we trained the principal patterns of each
brain region with large variances in categorization using an
independent auxiliary dataset consisting of AD and NC subjects.
The connectivity extraction of each imaging modality in the
target dataset was then treated as a single task, and a multi-
task sparse regression model (Nie et al., 2010) with l1/l2-norm
regularization was utilized to quantify the connectivity by jointly
identifying brain regions that have both robust structural and
metabolic associations with the target region. We examined
the diagnostic performance of the multi-modal connectivity
(MMC) by cross-validating the results with a support vector
machine (SVM) (Vapnik, 2000). The diagnostic performances
of the MMC was compared to single-modal connectivities, as
well as other existing connectivity analysis methods, based on
MRI and PET images.

MATERIALS AND METHODS

Subjects
Images were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database1. Subjects had
both MRI and 18F-fluorodeoxyglucose PET (FDG-PET) images
were included. Notably, we selected MCI patients who have at
least 3-year follow up information from the baseline. Finally,
baseline images of 75 NCs, 78 patients with AD, 75 stable MCI
(sMCI) patients, and 51 progressive MCI (pMCI) patients were
included. The general diagnostic criteria were defined in the
ADNI protocol. Briefly, the NCs were scored between 24 and
30 (inclusive) on the Mini-Mental State Examination (MMSE)
(Folstein et al., 1975) and had a Clinical Dementia Rate (CDR)

1adni.loni.usc.edu
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(Morris, 1993) of 0, was non-depressed and non-demented.
The MCI group were scored between 24 and 30 (inclusive) on
the MMSE, had a CDR of 0.5, with memory complaints and
objective memory loss, but no significant levels of impairment
in other cognitive domains, and no presence of dementia. In
the present study, subjects who progressed to AD within 3 years
from baseline were defined as pMCI, and subjects who did
not convert to AD within the same time period were define
as sMCI patients. The patients with AD were scored between
20 and 26 (inclusive) on the MMSE and had a CDR of 0.5 or
1, and met NINCDS/ADRDA criteria (McKhann et al., 1984)
for probable AD. Table 1 summarizes the characteristics of the
four cohorts. No significant difference was found between MRI
non-convertors and convertors in age [t(124) = 1.0473, p = 0.2987]
and gender [χ2

(1) = 0.2054, p = 0.6504].

Imaging Data
Structural images we downloaded were baseline T1 weighted MRI
acquired from 1.5T scanners. All the images were controlled for
quality and underwent corrections for geometry distortion and
intensity non-uniformity2. FDG-PET images were acquired 30 to
60 min post-injection and reviewed for quality at the University
of Michigan. All PET images were co-registered, averaged,
reoriented, interpolated into standard resolution (160× 160× 96
voxels, 1.5 mm3 voxel size), and normalized for intensity3.

METHODS

Preprocessing
MRI and PET images were preprocessed using Statistical
Parametric Mapping (SPM12) software. The preprocessing of MR
images was conducted using the CAT12 toolbox4 with the default
setting. Briefly, the process started with registration using affine,
followed by realignment, bias correction for inhomogeneity,
and the segmentation of gray matter (GM), white matter
(WM) and cerebral spinal fluid (CSF) (Ashburner and Friston,
2005). Then GM segmentations were spatially normalized to
a prior template in the MNI152 space using the DARTEL

2http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/#mri-pre-processing-
container
3http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/#pet-pre-
processing-container
4www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf

TABLE 1 | Demographic information of participants.

Cohorts Auxiliary domain Target domain

AD NC sMCI pMCI

Age 75.96 ± 7.24 76.26 ± 5.16 76.22 ± 6.28 74.95 ± 7.29

Sex (M/F) 46/32 45/30 50/25 32/19

MMSE 23.40 ± 2.15 28.91 ± 1.19 27.41 ± 1.62 26.80 ± 1.69

CDR 0.5 or 1 0 0.5 0.5

M/F, male/female; MMSE, Mini-Mental State Examination (MMSE); CDR,
Clinical Dementia Rate.

(Diffeomorphic Anatomical Registration using Exponential Lie
Algebra) algorithm (Ashburner, 2007), and the spatial resolution
of images were resampled to 2 × 2 × 2 mm. Normalized
images were corrected for non-linear deformation of the spatial
normalization to generate modulated normalized images, which
were then smoothed using a 5-mm full width at half maximum
(FWHM) Gaussian kernel. For the preprocessing of PET images,
each image was co-registered to the MRI of the same subject and
then normalized using the deformation field of the corresponding
MRI. The normalized images were smoothed using a 5-mm
FWHM Gaussian kernel. The cerebral part of the two image
modalities were segmented into hundreds of brain regions by
registering a parcellation atlas to the template image in the
MNI152 space. Here, we used Human Brainnetome Atlas for
brain parcellation, which is a voxel-based parcellation containing
246 brain regions that builds upon multi-modal connectivity
information of 40 healthy adults from the Human Connectome
Project (HCP) database (Fan et al., 2016).

Overview of Multi-Modal Network
Human brain is a highly interactive system, in which a
connectivity may link multiple high-related brain regions rather
than only two of them. Such connective patterns were found
in both functional and structural brain networks (Ryali et al.,
2012; Zheng et al., 2018). In the present study, we took a further
step to extract networks based on multiple imaging modalities
to facilitate the diagnosis of MCI-to-AD conversion. The multi-
modal network is denoted as G = (V,E), with a node set V
and an edge set E. Here, V is a set of brain regions and E is
consisted by the MMC.

The diagram illustrated in Figure 1 outlines the pipeline of
the multi-modal network construction. Briefly, the MRI and
PET images were first preprocessed and registered to a prior
template. A principal component analysis (PCA) with a bagging
strategy was then performed to each imaging modality in the
auxiliary domain, consisted by AD and NC subjects, to extract
the PCs of each brain region based on resampling the subjects
with replacement. Regional data in the target domain, consisted
by sMCI and pMCI subjects, were then projected to that feature
space using the corresponding PCs of the brain region. The
projected data were submitted to a multi-task sparse regression
model to extract the connectivity between one target brain region
and other regions. The technical details are provided below.

Bagging-Based Principal Component Analysis
In the present study, we applied PCA to the auxiliary domain to
extract the principal patterns of the voxels in each brain region
that have large variances between AD and NC. We speculated that
the information possessed by the top PCs should also be able to
contribute to discriminate AD-like (pMCI) and NC-like (sMCI)
subjects. Studies have found that using classifiers trained by
NC and AD subjects enhanced the performance of categorizing
MCI convertors from non-convertors (Fan et al., 2008; Cheng
et al., 2015), suggesting the effectiveness of using discriminative
information trained by AD and NC subjects. Because the sample
size of the neuroimaging dataset is usually small, the principal
patterns that are estimated based on the small dataset may not
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FIGURE 1 | Schematic representation of the MMC extraction and the classification process. Principal pattern training (red box): for each modality, PCA was applied
to each brain region of the auxiliary domain data consisted by AD and NC subjects. The dataset used for PCA was derived from the bagging process, which
randomly picked subjects with a replacement to form a new sample set. This process was repeated for T times, and T matrices of eigenvectors were obtained for
each brain region. Multi-modal connectivity extraction (green box): For each modality, we projected each brain region of observations in the target domain (sMCI and
pMCI) to a low dimensional feature space using the eigenvectors of the corresponding region. For each brain, suppose the i-th principal component (eigenvector)
was used for projection, then a projected vector of T × 1 could be obtained. The projected vectors of all brain regions using the i-th principal component (PC) of
each region could form a data matrix XM ∈ RT×K , where K is the number of brain regions, and M is the imaging modalities. The multi-task regression was performed
with the vector of one brain region in XM, in turn, served as the target variable and the vectors of other regions as regressors. The non-zero regression coefficients
were set to 1 to represent the connectivity between regressors and the target brain region. If S PCs were selected for projection, the aforementioned process was
repeated S times. Then a binary vector of 1 × S could be obtained that represents the relationship between one regressor and the target brain region derived from S
regression processes (as shown in the right of the green box). The binary vector was converted to decimal and normalized to represent the connectivity strength
between the two brain regions. Cross validation: leave-one-out cross validation, with nested two-step feature selection and parameter optimization, was performed
on MCI subjects (N = 75 pMCI + 51 pMCI) to examine the validity of the MMC.

be generalized across datasets. Therefore, we applied a bagging
strategy to PCA, which trained the PCs of each brain region
by random sampling the auxiliary samples with replacement
for T times (T = 200 in this study) and ensuring the number

of resampled subjects in each group was equal to the original
dataset, to reduce the possible estimation bias of single time
analysis (see the red box in Figure 1). Regional data of each
subject in the target domain were then projected to a lower
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dimensional space using the PCs of each brain region. Finally,
for each modality of a brain region, we obtained a projected data
matrix with the dimension of T × S, where S is the number of
PCs that were chosen for projection.

In the present study, we projected a brain region of an
individual in the target domain using the S selected PCs
of the same region. For example, we denoted the projected
individual using the i-th PCs of each brain region as XM

PCi
=[

xM
1 , xM

2 , ..., xM
K
]
∈ RT×K , with M imaging modalities, K brain

regions and T times bootstrapping sampling. Therefore, if
we selected S top rank PCs of each brain region for
projection, the projected individual could be denoted as IM

={
XM

PC1
,XM

PC2
, ...,XM

PCS

}
. This step not only extracts the regional

principal patterns of the subjects in the target domain, but also
expands the feature dimension in brain regions, which allows us
to estimate inter-regional relationships on an individual level.

Multi-Modal Connectivity Extraction
The Multi-task sparse regression model was utilized instead of
the paired correlation (e.g., Pearson correlation) and single-task
model (e.g., LASSO), to quantify the relationships between a
target brain region and multiple predictor regions (Yuan and Lin,
2006; Argyriou et al., 2007). As opposed to learning each task in
isolation, multi-task learning exploits similarities across different
learning tasks and can be used to jointly estimate the relationship
between target variables and regressors across different types of
tasks (Maurer et al., 2016), which therefore further takes intrinsic
links of multimodal data into account.

For using each of the subset XM
PCi
∈ RT×K , (i ∈ S), the MMC

among brain regions were generated by repeating the multi-
task regression procedure K times, with each brain region in
turn acting as the target variable and the remaining regions as
the regressors. In the present study, we denoted each imaging
modality as a single learning task, formulated as:

yPCi
= Xm

PCi
wm

PCi
, (m ∈ M, i ∈ S)

where Xm
PCi

, yPCi
= xm

k , (k ∈ K), and wm
PCi
∈ RK×1 were the

regressor matrix, target vector, and regression coefficient,
respectively. Notably, during the k-th regression, the regressor
matrix Xm

PCi
=

[
xm

1 , . . . , xm
k−1, 0, xm

k+1, . . . , xm
K

]
∈ RT×K

contained all regional vectors, and xm
k was set to 0. The

multi-task regression function was estimated via l1/lq-norm
regularization (q = 2 in our study), which applies the l1 penalty
over the regression coefficients that are derived from the l2
penalty for each input across tasks, thus allowing us to quantify
the connections via jointly considering the information from
two tasks (morphological and metabolic information). The l1/lq
penalty was formulated as follows:

min
W

1
2

M∑
m=1

∣∣∣∣ym
PCi
− Xm

PCi
wm

PCi

∣∣∣∣2
2 + λ

∣∣∣∣WPCi

∣∣∣∣
`1/`q

where λ is the l1/lq-norm parameter specified as a ratio of the
maximal sparse parameter whose value lies in the interval [0,
1]; WPCi =

[
w1

PCi
,w2

PCi
, ...,wM

PCi

]
∈ RK×M is the combination

of regression coefficients of multiple tasks, with each row
representing the associations of the same brain region with target
regions toward different tasks. The multi-task regression was
conducted using the SLEP toolbox (Liu et al., 2009). We varied
the value of λ in specified ranges (λ ∈ {1, 2, ..., 10} × 10−3) as
suggested by Zheng et al. (2018), and evaluated the corresponding
performance in terms of classification accuracy. The WPCi is used
to measure the robustness of connectivity, in which rows with
non-zero values suggest relatively strong relationships between
the regressors and target regions, while rows with only zeros
suggest a weak relationship. We merged the columns of WPCi
into a binary vector with a K × 1 dimension by setting the
non-zero rows to 1 and all zero rows to 0. The pipeline of
the aforementioned procedure is given in the left of the green
box in Figure 1. Notably, because we selected S PCs for each
brain region, this process was performed S times with XM

PCi
(i ∈ S)

alternately serving as the model input. Therefore, for each target
brain region, a binary matrix (V ∈ RK×S) was finally obtained
that represents the relationships between this region and all other
regions across multiple PCs.

MCI is known as a transition stage in AD, their alteration
modes are similar (Braa and Braak, 1991; Karas et al., 2004;
Rombouts et al., 2005) but vary in terms of connective strength
(Yao et al., 2010; Binnewijzend et al., 2012). Therefore, the
connective strength may possess critical information that should
not be omitted in early diagnostic studies. However, because
the regression coefficients of the back-ward model (e.g., multi-
task regression model) cannot be used to represent the weights
of features (Haufe et al., 2014), it limits the interpretation of
connective strength between regressors and the target variable.
To this end, we proposed to quantify the connective strength
between two brain regions via a binary to decimal encoding
strategy, defined as:

Weightj = F(vk)

=
bin2dec(vk)

bin2dec(v)

where vk is the k-th row of binary matrix V; v is an all-
one vector that has the same dimension of vk; bin2dec is a
function to convert the binary sequence to a decimal number.
We will take the right panel in the green box in Figure 1 as
an example. For a binary matrix V derived from S multi-task
regression models with region 2 as the target vector in each
model, the j-th row of V represents the relationship between
region 2 and region j across the S selected PCs. The connective
weight between these two brain regions were then calculated
via the equation above, which formed the j-th element of the
second row of the final connective matrix. This method takes
the information differences that the PCs possess into account
and gives relatively large weights to the top-ranking PCs if
they significantly contribute to the regression process. For each
subject, the obtained network matrix was asymmetric with 246×
(246− 1) = 60, 270 elements, which were concatenated to form
a feature vector for feature selection. Notably, the asymmetric
network does not reflect any communication mechanism or
causality, rather, it represents region-to-region relationships.
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Feature Selection and Classification
We used the leave-one-out cross validation strategy to assess
the classification performance of each feature type (see the blue
box in Figure 1). The feature selection was applied to the
training set of each validation process. Here, we used a two-
step feature selection strategy to find a relative optimal feature
subset for classification. In the first step, the two sample t-test was
utilized to roughly filter-out the features that were less relevant
to the discrimination, features with the top 20% t values were
preserved. These features were then evaluated by a linear SVM-
based recursive feature elimination (SVM-RFE) strategy (Guyon
et al., 2002), which iteratively removes the features with the lowest
discrimination performance. The ranking criterion of features
was evaluated by the square term of weight coefficients (w2)
derived from the SVM model, calculated as w =

∑
k αkykxk,

where yk and xk is the class label and the feature vector, of sample
k, respectively, α is an sparse index of support vectors. In each
interaction, the 500 lowest ranking features were removed when
the feature dimension was over 10,000; the step size was reduced
to 50 for the last 10,000 features, 5 for the last 1,000 features, and
1 for the last 100 features (Zheng et al., 2019). The classification
process was conducted using the LIBSVM toolbox (Chang and
Lin, 2011). A nested five-fold cross validation was performed
to optimize the parameter C of linear SVM in the range of 2β,
β ∈ {−8,−7, ..., 8}. The classifier was then trained based on the
selected features of the training set and the optimized parameter.
To find the peak of accuracy, we increased the input features
of the classifier from the top 10% of features derived from the
first step of feature selection, with 5% increments of features.
The accuracy, sensitivity, specificity, and area under the receiver
operating characteristic (ROC) curve (AUC) were calculated for
the performance assessment.

RESULTS

Prediction Performance Using the MMC
Structural and metabolic features showed limited discriminative
power in identifying MCI convertors from non-convertors,
which achieved an accuracy of 61.11 and 59.52%, respectively.
The combination of these two types of features slightly improved
the prediction accuracy to 62.70%, with AUC of 0.6790, but
the classification performance remained limited. As shown in
Figure 2A and Table 2, by varying λ and the number of selected
PCs (S), the MMC achieved the best performance at λ = 6×
10−3 and S = 12, with an accuracy of 79.37%, accompanied by
a high AUC of 0.8923 and small number of support vectors
(76 on average). This is a significant improvement relative
to the accuracy of the GM volume, metabolism and their
combinations (χ2 test, ps < 0.005, Table 2). ROC curves of
classification analyses using different feature types are shown
in Figure 2B.

Connectivity With Significant
Between-Group Difference
The between-group difference of MMC was evaluated via a
two-sample t-test with a false discovery rate (FDR) correction
(q < 0.05) (Benjamini and Hochberg, 1995). Connectivity with
a significant difference between the MCI convertors and non-
convertors is visualized in Figure 3. The MMC that connected
the temporal lobe with the frontal and parietal cortices exhibited
significant reductions, e.g., the connectivity between the left
rostral hippocampus and right middle frontal gyrus (MFG,
ventrolateral BA8), between the right middle temporal gyrus
(MTG, dorsolateral BA37) and right inferior frontal gyrus

FIGURE 2 | The classification performance of the MMC. (A) Classification accuracy with varying λ and number of selected PCs (S). The best accuracy was achieved
at λ= 6× 10−3 and S = 12. (B) ROC curves at the best classification performance.
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TABLE 2 | Comparison of the classification performances based on the original
imaging features and MMC.

Features Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC P value

GM volume 61.11 52.94 66.67 0.6235 0.0015

Metabolism 59.52 31.37 78.67 0.6110 0.0006

GM volume + 62.70 64.71 61.33 0.6790 0.0035
Metabolism

MMC 79.37 74.51 82.67 0.8923 –

MMC, multi-modal connectivity; AUC, area under curve; P value = compared the
accuracy obtained by each feature in relative to the MMC by using χ2 test.

FIGURE 3 | The MMC showing a significant difference between sMCI and
pMCI. The red and blue color indicates increased and decreased strength of
connectivity in the pMCI cohort, respectively (two sample t-test, FDR
corrected, q < 0.05). The direction is used to differentiate the connections
between the same-node pairs.

(IFG, opercular BA44), between the left inferior temporal gyrus
(ITG, intermediate lateral BA20) and left inferior parietal lobule
(IPL, rostrodorsal BA40), and between the right postcentral
gyrus (PoG) and right caudal hippocampus. In contrast, the
connectivity that connected the right rostroventral IPL with
left caudal IPL and left superior frontal gyrus (SFG, BA9)
significantly increased. These results were in line with previous
findings showing abnormal functional and structural alterations
within these brain regions (e.g., the hippocampus and temporal
cortex) (Baron et al., 2001; Frisoni et al., 2002; Matsuda et al.,
2002; Chételat et al., 2008; Mosconi et al., 2009) and disrupted
the connectivity related to them in patients with MCI and
AD (Wang et al., 2007; Yao et al., 2010; Dai and He, 2014;
Herholz et al., 2018).

Comparisons With Other Connectivity
Extraction Approaches
We further compared the prediction performance of the MMC
with other widely used connectivity extraction approaches (Wee
et al., 2013; Kong et al., 2014; Raamana et al., 2015; Zheng
et al., 2015) on the dataset we used here via the same leave-
one-out cross validation process. As shown in Figure 4, the
prediction performance of the MMC significantly outperformed
most types of connectivity that extracted from distinct imaging
modalities (χ2 test, p < 0.05), except the metabolic connectivity

of Wee et al. (2013), Zheng et al. (2015). Though the
combination of connectivity of the two modalities improved
the prediction accuracies to 75.40%, it still did not surpass the
accuracy of the MMC.

Comparisons of single-modal connectivity that were extracted
following the same method we introduced and using LASSO
instead of the multi-task model are shown in Table 3. These
connectivities exhibited superior performances relative to the
connectivity based on the paired-relationship of the same
modality (see Figure 4), and achieved an accuracy of 76.19%
when combined with the two modalities for classification
(the average number of support vectors during leave-one-out
cross validation was 87). However, it still did not exceed
the performance of MMC. In addition, connectivity based on

FIGURE 4 | Accuracies derived from leave-one-out cross validation using
different types of connectivity. Four commonly used parcellation-based
connectivity extraction methods, including Wee et al. (2013); Zheng et al.
(2015), Raamana et al. (2015), and Kong et al. (2014), were applied to each
imaging modality on our data, and were compared to the performance of the
MMC. The asterisk indicates the differences between accuracies are
statistically significant (p < 0.05, χ2 test).

TABLE 3 | Comparison of classification performances based on different
regularization term.

Regularization term Modalities Accuracy (%) AUC

l1-norm MRI 69.05 0.7234

PET 73.81 0.8497

MRI + PET 76.19 0.8839

l2,1-norm MRI + PET 79.37 0.8923

AUC = area under curve.
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metabolic information outperformed the structural connectivity
in predicting disease progression, which was in line with
previous findings showing an excessive hypometabolism relative
to atrophy (Chételat et al., 2008).

DISCUSSION

Extraction of an effective biomarker is one of the critical
factors for improving the prediction accuracy of MCI-to-
AD conversion. Numerous studies in the literature have
indicated the superior performance of using cortico-cortical
connectivity relative to morphological and metabolic features
when identifying patients with MCI and AD from the NCs
(Wee et al., 2013; Zheng et al., 2015, 2018; Yao et al., 2016;
Liu et al., 2018). However, most of these connectivities are
based on a single imaging modality (e.g., MRI), which omitted
the potential coupling mechanism between the information
possessed by different imaging modalities, therefore, limiting
the performance of categorizing MCI convertors from non-
convertors. In the present study, we proposed a novel
connectivity extraction approach based on multi-modal images
(i.e., MRI and PET), in order to enhance the performance
of early AD diagnosis. The satisfactory performance achieved
by the MMC suggested the effectiveness and feasibility of
the multi-modal fusion strategy in connectivity extraction,
and the high AUC indicated its remarkable generalizability.
Possible reasons for the advanced performance of MMC are
discussed below.

Multiple imaging modalities provide a comprehensive
representation of abnormal alterations in the brain. MRI and
FDG-PET were suggested to represent distinct information
in depicting AD-related changes in the brain, i.e., structure
atrophy is significantly associated with the cognitive reserve
of patients with AD, whereas the development process of
the disease and its clinical severity are more related to the
hypometabolism of the brain (Benvenutto et al., 2018). This
is complementary information that cannot be interchanged
between imaging modalities for diagnosis (Zhang et al., 2011,
2012). We speculated that the combination of multi-modal
information in the connectivity extraction primarily contribute
to the enhanced prediction performance. Patients with MCI and
AD are accompanied with atrophy and hypometabolism of GM
in various cerebral structures, such as the hippocampus, posterior
cingulate, and the medial temporal cortices (Baron et al., 2001;
Frisoni et al., 2002; Chételat et al., 2008; Mosconi et al., 2009).
Such alterations may influence the inter-regional relationship
in a complex manner, thus difficult to represent via a single
imaging modality. The present connectivity extraction approach
simultaneously combines the information from different
modalities, providing a more comprehensive description of the
changes in the inter-regional relationship, which therefore may
be more sensitive to AD progression than connectivity based on
a single imaging modality.

Auxiliary domain training increases the discriminative
power of the principal patterns. The subtypes of MCI may
have similar alteration modes in both morphological and

metabolic domains, which limits the extraction of informative
features for categorization (e.g., principal alteration patterns)
(Zheng et al., 2018). Since MCI is the transition stage between
NC and AD, a hypothesis arises that the brain alterations of
subjects with sMCI may be more like the NCs, while patients
who progress to dementia may have a similar alteration mode as
the AD cohort. This hypothesis has been utilized to promote the
separation of MCI convertors and non-convertors, for example,
using the classifiers trained by AD and NC subjects (Fan et al.,
2008; Cheng et al., 2015). In the present study, we extracted
the principal patterns of each brain region from the auxiliary
domain of AD and NC subjects to increase discriminating ability.
The projection of subjects in the target domain, using these
principal patterns, may enlarge the variance between the two
MCI subtypes, which therefore contributes to the enhanced
prediction performance. In addition, auxiliary domain training
only needs to be performed once. When we have the PCs from
the auxiliary domain, it will take a few seconds to build the MMN
for a new subject.

One big challenge of the neuroimaging study is that the
available datasets are usually small, especially for multi-modal
longitudinal data. The small samples and the large dimension of
features may give rise to a biased estimation of the model. In the
present study, we applied the bagging strategy which resamples
the subjects with a replacement to form a sub-dataset to the
PCA process rather than training PCs on all of the subjects. One
benefit of using the bagging strategy is that it could give rise to a
comprehensive estimation of the principal patterns in each brain
region. Thus, enhancing the generalizability of the models trained
using these PCs.

Studies have suggested that the linear regression model (e.g.,
LASSO) may additionally take the possible effects of other brain
regions into account, which could take advantage of the nature
of cerebral interplay, therefore making it superior to using paired
correlations (e.g., Pearson correlation) (Ryali et al., 2012; Jie et al.,
2014, 2016; Yu et al., 2017; Zheng et al., 2018). Our results
showed that connectivity extracted by LASSO outperformed
the paired relationship and were consistent with these findings.
Compared to learning each task independently, multi-task
learning allows using the relationship between different tasks,
leading to a better model (Argyriou et al., 2007). In the present
study, multi-task sparse regression was utilized to jointly find
brain regions that were both morphologically and metabolically
associated with the target region. Considering the unique features
of the modalities and their potential interaction, the multi-
task model may better characterize the overall relationships
among brain regions.

Although the MMC has significantly enhanced the prediction
performance, there are some limitations that need to be addressed
in the future. First, the grouping criteria may contain false-
categorized cases. In the present study, we defined the sMCI
as subjects who maintained MCI status for 3 years (Wee et al.,
2013; Zheng et al., 2015, 2018; Tong et al., 2017), however,
some sMCI subjects may convert to AD after a 3-year follow
up period. Since a large number of samples in the ADNI
(especially for subjects who have multi-modal images) do not
have longitudinal tracking information covering a period that
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long, this could be an important limitation that influences the
discrimination (Moscoso et al., 2019). Second, we used voxel-
based morphometry (VBM) analysis to extract GM volume as
the structural measurement, however, there are diversified MRI
features (e.g., cortical thickness and sulcal morphology) that
were reported to have significant alterations in patients with
MCI and AD (Du et al., 2007; Im et al., 2008; Liu et al.,
2012; Yao et al., 2012), these features will be included in our
future work as a potential means to enhance the classification
performance. Third, the multi-task model with l2,1-norm penalty
assumed all tasks share a common set of features, but omitted
the information variance conveyed by different modalities (Liu F.
et al., 2014). Methods to quantify an inter-regional relationship
by considering the complementary information between tasks
must be developed. In addition, though we have included
all MCI subjects in the ADNI database who have both MRI
and PET images and met the grouping criteria, replications
on large independent samples would still be beneficial to
examine the generalizability and validity of the MMC. In
addition, we did not got control age and gender effects before
network construction because it did not significantly influence
the classification performance of morphological connectivity
(Zheng et al., 2018), however, another study suggested a
significant impact of age on classification performance when
using GM density as features (Tong et al., 2017). The influences
of age and gender on classification performance will be
investigated in future work.

CONCLUSION

In conclusion, the connectivity extracted using multi-modal
measures possess important information for the categorization
of MCI-convertors and non-convertors. The classification
performance achieved by MMC outperformed both structural
and metabolic features, as well as connectivity extracted
using other common approaches. These results suggested
the effectiveness of MMC in early AD diagnosis, with
potential clinical implications for the auto-diagnosis of
neuropsychiatric disorders.
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